维生素在畜禽饲料中的作用ppt

发布时间: 2023-12-21 18:07:23 来源:鸡鸭鹅饲料

  自配多维的缺点 单项维生素采购成本高 需购置专用设备,配备专门人员 贮存期效价降低 占用仓储空间 配料误差 生产的全部过程粉尘、残留损失 生产管理环节增加、效率降低 品控困难(含量、剂型) 使用复合多维的优点 原料品控 货真价实 节省单维采购资金、人力、物力 设备、确保精度、混合均匀度 节省仓储空间 避免粉尘、残留损失 减少配料误差 避免单维贮存的效价损失 风险转移 扬长避短,发挥优势 减少生产管理环节、提高效率 锐科多维的特点——配方设计科学 需要量确定:营养需要(NRC等)、营养参数、最新科研成果、实践经验、生产性能及饲管水平。 最大限度地考虑以下影响维生素需求的因素:应激水平、商用维生素的稳定性(贮存、加工)、饲料原料中维生素的含量及可利用性、饲料生产变异、产品试验及实际饲养经验。 NRC等营养标准所推荐的维生素需要量,仅能预防畜禽维生素缺乏症,维持尚能被接受的低生产水平 畜禽发挥最佳生产性能和保持最佳健康情况所需维生素远高于NRC推荐量。 差异较大的有VA、VD3、VE、VB12、生物素、叶酸等 VK3、泛酸差异较小 维生素来自世界最著名的公司; 最新稳定化处理的原料 原料进厂程序严格 VA 、叶酸 锐科多维载体优点: 经过我司博士等相关科研人员的多年实验努力,我司目前把我司“锐科”复合维生素产品的载体调整为复合载体,调整后的载体较原来的载体不仅具备原有的玉米芯木质部颗粒的优良特点,尤其在容重、水分及颗粒的均匀度方面更适合各种单项维生素的混合及保存。具体如下: 载体原料组成: 稻壳粉、碳酸钙及淀粉,其中添加淀粉的目的是达到粘合剂的作用,此条 在与客户交流时可以不提及。 加工原理: 把上述原料按照特殊的比例加入水混合起来,做成我们要达到与各种单项维生素容重接近的颗粒,然后经过瞬时高温(300摄氏度左右),由于存在颗粒中的水分在瞬时的高温下,迅速被蒸发,水分由里到外被蒸发产生迅速膨胀,自然形成多孔粗糙的表面,经实践检验该粗糙多孔的表面具有极强的吸附性。 复合载体的优点: 具备了作为载体一定要有的强大承载吸附特性,确保与各种单项维生素结合牢固,在运输和储存中不易发生分级现象; 水分含量低,由于复合载体自身的特性就保证了你所含水分极低,可以在2%以下;生产出的复合维生素水分能保证在5%以内,甚至更低,这样就有效的阻断了维生素的氧化还原反应,确保维生素的稳定,使其损失降到最低; 流动性理想,容重与单项维生素的平均容重一致,在0.63—0.64之间,确保“锐科”多维的混合均匀度; 粒度均匀一致,确保在饲料中均匀分布; PH为中性,保证了维生素的稳定,由于各种单项维生素中有偏酸性也有偏碱性的,这就要求载体必须在中性范围,确保载体不会破坏单项维生素的稳定; 不含脂肪,杜绝了因为脂肪的存在而造成的氧化酸败而影响维生素尤其是脂溶性(A、D、E、K)维生素的稳定性; 不含蛋白质,杜绝了蛋白质对水分的吸收而造成的变质,保证水分的稳定,从而确保维生素的稳定。 具有一定的柔韧性和弹性,具有一定的抗压性,确保复合维生素不会结块。 锐科多维与另外的品牌多维的 最大区别: 以采用专利技术特殊加工的、具有多种独特优点的复合载体的优点: 复合载体水分含量低 氧化还原反应是饲料中维生素失活的重要的因素,水份是参与氧化还原反应的离子进行转移的介质。 经过控制维生素预混料的水份可以很好的阻断维生素的氧化还原反应。 水份的来源:载体、单项维生素、空气 复合多维产品主要水份来自载体,玉米芯木质部颗粒水份低于5%。 维生素 在畜禽饲料中的应用 维生素的生物学作用及功能 脂溶性维生素:不易溶于水,易溶于脂肪和大部分有机溶剂,存在于含有脂类的饲料中,与日粮中的脂肪一同被动物吸收。 A 是所有具有视黄醇生物活性的β-紫罗宁衍生物的统称。具有三种成分:维生素A酸、维生素A乙酸脂及维生素A棕榈酸脂,前者稳定性较差。维持上皮细胞健康、上皮组织功能,增强动物对传染病的抵抗力;促进性激素的形成,提高繁殖力;促进视紫质形成,维持正常视力,防止夜盲症;维持骨骼的正常生长和修补,促进机体生长发育;维持神经细胞的正常功能。 D3(又称骨化醇)主要有维生素D2(麦角固醇)及D3(胆钙化固醇,较稳定)两种。调节钙磷代谢,促进钙磷吸收,维持骨骼和牙齿正常生长发育,提高蛋壳质量。 E(生育酚)不稳定,经酯化后可提高其稳定性,最常用为维生素E乙酸脂。调节碳水化合物和肌酸的代谢,提高糖和蛋白质的利用率;促进性腺发育,提高生殖机能;具有抗氧化作用,与硒有协同作用,能有很大效果预防细胞中敏感的脂肪酸和其他敏感物质(如VA、类胡萝卜素)被氧化破坏;维护骨骼肌和心脏的正常功能,保护肝脏功能;维持正常生殖机能,防止肌肉萎缩。 K3(凝血维生素,是β-甲萘醌衍生物的总称;常见有K1、K2、K3、K4四种,其中在动物肝内转换成K2起作用)。商品饲料中主要以Vk3(亚硫酸氢钠甲萘醌MNB94%,除此以外还有亚硫酸氢钠甲萘醌复合体MSB50%)。促进凝血酶原的形成,加速凝血,维持正常的凝血时间;具有利尿、强化肝脏的解毒功能。 水溶性维生素:(B族维生素(参与体内糖和脂肪的代谢)、Vc及肌醇) B1(硫胺素)调节碳水化合物代谢,维持神经组织和心脏的正常功能,防止心肌衰竭和神经系统疾病发生;维持肠道的正常蠕动,促进消化道内脂肪的吸收以及酶的活性,提高动物的食欲, B2(核黄素)促进生长,提高孵化率及产蛋率;是参与碳水化合物、蛋白质、核酸和脂肪的代谢中某些酶系统的组成成分;提高蛋白质在体内的沉积,提高饲料利用率;保护皮肤、毛囊黏膜及皮脂腺的功能;可防止家禽卷爪麻痹症。 B6(吡哆醇、吡哆醛及磷酸吡哆胺形式)蛋白质代谢的辅酶,与红血球形成有关。商品中主要以盐酸吡哆醇形式存在。 B12 (氰钴胺素或钴胺素,发酵法生产,在生产链霉素及庆大霉素的废液中存在);深红色粉末。是体内很多酶系统的辅酶,与体内多种代谢有关,尤其与蛋白质代谢有密切关系;促进胆碱、核酸合成,促进红细胞成熟,防治恶性贫血,促进幼畜生长。 VH(生物素)(D-生物素,含硫的环状化合物)白色结晶粉末,作为活化二氧化碳和脱羧作用的辅酶,直接或者间接参与蛋白质、脂肪和碳水化合物等的代谢过程;防止皮炎、蹄裂、生殖紊乱和肉仔鸡脂肪肝、肾病综合症的发生。 VB11(叶酸)(碟酸谷氨酸的衍生物)黄色或者橙黄色结晶粉末。与VB12和VC共同参与红细胞和血红蛋白的生成;促进免疫球蛋白的生成;增强对谷氨酸的利用率;保护肝脏并具有解毒作用;防止贫血、羽毛生长不良、繁殖率降低等疾病及降低胚胎死亡率。 VB5(烟酸)是参与碳水化合物、脂肪和蛋白质代谢过程中几种辅酶的组成成分,参与细胞氧化,扩张末梢血管;维护皮肤及神经的健康,促进消化系统功能。 VB3(泛酸)是辅酶A的辅基,参与酰基的转化。在物质代谢中起着及其重要的作用;维持皮肤和黏膜的正常生理功能和毛发的色泽;增强对疾病的抵抗力;防止皮肤及粘膜病变,防止生殖系统紊乱,提高产蛋率及降低胚胎死亡率。 VB4(胆碱)磷脂成分,甲基的提供者,参与脂肪代谢,提高肝脏利用脂肪酸的能力,抗脂肪肝;是构成乙酰胆碱的主要成分,在神经传导中起及其重要的作用。 Vc(抗坏血酸)体内的强还原剂,参与前胶原的形成;促进肠道内铁的吸收,促进胶原蛋白的合成;促进胶原组织如骨,结缔组织、软骨、牙齿和皮肤等细胞间质的形成;具有解毒作用,能减轻砷和重金属对肝脏的损害;抵抗病毒和细菌的感染;改善心肌功能,减轻维生素A、E、B1、B12和泛酸等不足引起的缺乏症;增强对各种应激现象的适应性;对机体组织的构成和骨的钙化起及其重要的作用,与激素合成有关,防止应激症状的发生,提高抗病率。 肌醇 促进脂肪代谢,防止肝脏脂肪积累,加速除去肝脏过多脂肪。 应激免疫与维生素 在畜禽生理紧张、运输、冷或热应激、饲养密度过高等状况下,饲料中适当补加维生素C和维生素E,有利于减轻各种应激对畜禽造成的不利影响。当发生螺旋体病、沙门氏杆菌病和感冒时,适当添加维生素C可改善畜禽体况,提高抗应激能力。 热应激或其他应激时,家禽对维生素的需要量增加,此时添加维生素C有较好的抗应激效果。维生素对维持家禽正常的免疫功能亦具备极其重大的作用,日粮中补充高于需要量3~6倍的维生素E,可提高畜禽体液免疫力和激发吞噬作用而提高抗病能力。 维生素A具有保护上皮组织的健全与完整、促进黏膜和皮肤的发育与再生、促进结缔组织中黏多糖的合成、维护细胞膜和细胞器膜(线粒体、溶酶体)结构的完整等功能。维生素A缺乏或者不足都可能会导致免疫抑制,对感染的抵抗力下降,免疫系统的第一道防御屏障——黏膜上皮受到破坏,机体免疫功能受损,血清免疫球蛋白水平降低和IgA反应受损,迟发型超敏反应减弱,抑制细胞对促分裂原的反应,自然杀伤细胞(NK细胞)活力下降。 维生素E对于免疫细胞膜结构的维持有一定的作用,维生素E缺乏必然影响免疫。VE不仅作为细胞体内抗氧化剂稳定多不饱和脂肪酸以及合成与分解代谢的中间产物不被氧化破坏,而且影响花生四烯酸的代谢和前列腺素的功能,而前列腺素水平与免疫保护作用直接相关,前列腺素影响淋巴细胞的活力、淋巴细胞的增殖和巨噬细胞的功能。VE可通过抑制前列腺素-2和皮质酮的生物合成,促进体液、细胞免疫和细胞吞噬作用以及提高IL-2的含量来增强机体的整体免疫机能。另外,VE对免疫的推动作用具有非常明显的剂量效应关系。 VC能维持免疫系统结构和功能完整性,在抑制细胞内外的自由基反应方面也起着重要的作用。VC还参与电子传递、氨基酸氧化代谢、金属离子代谢、肉毒碱的生物合成等生理活动,这些功能与机体免疫都有密切关系。VC能增强嗜中性白细胞的趋化药性,并能限制肾上腺类固醇激素的过多生成,从而促进免疫。VC缺乏会抑制细胞免疫反应和杀伤力。 核黄素在体内以辅酶黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的形式参与氧化还原反应。核黄素缺乏肝线粒体酯酰CoA脱氢酶以及谷胱甘肽还原酶活性降低,使生物中不饱和脂肪酸氧化,进而影响生物膜完整性,进而影响细胞功能。核黄素还参与VC的生物合成,因此,核黄素在机体免疫过程中起重要保障作用。 核黄素在体内以辅酶黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的形式参与氧化还原反应。核黄素缺乏肝线粒体酯酰CoA脱氢酶以及谷胱甘肽还原酶活性降低,使生物中不饱和脂肪酸氧化,进而影响生物膜完整性,进而影响细胞功能。核黄素还参与VC的生物合成,因此,核黄素在机体免疫过程中起重要保障作用。 叶酸是维持免疫系统正常功能的必需物质。叶酸缺乏时,机体内胸腺重量和胸腺细胞数量、总淋巴细胞数以及抑制性T细胞比例和数量降低,并可改变脾淋巴细胞对T细胞丝裂原的反应性。 维生素在母猪生产中的重要意义 母猪肢蹄病、少乳症、产弱死胎、炎、子宫炎等问题,适时足量补充维生素可在某些特定的程度上减轻或避免以上问题的发生。维生素的作用特殊且复杂,它们多以辅酶的形式参与动物体内多种养分的消化、吸收和代谢过程,并调控激素的分泌和影响动物免疫力。维生素作用的方式及大小依赖于其它养分的供应,并与饲养管理上的水准密切相关。因此,母猪对添加维生素的反应多样且很不一致。相对于其它营养素,目前对母猪维生素的营养研究较少且不够系统和深入,研究最重要的包含VA、β-胡萝卜素、VE、叶酸、生物素对母猪繁殖性能的影响。 VA是维持一切上皮组织健全所必需的物质,缺乏VA时,生殖系统等组织的上皮细胞发生鳞状角质变化,引起炎症,并降低动物的免疫力。VA参与母猪卵巢发育、卵泡成熟、黄体形成、输卵管上皮细胞功能的完善和胚胎发育等过程。视黄酸和三碘甲腺原氨酸能促进胎盘催乳激素的合成,以刺激乳腺发育。母猪缺乏VA时,胚胎畸形率、死胎率和仔猪产后死亡率增加。 一般认为母猪排卵数为15~20枚,卵子受精率为90%~95%,因此,母猪怀孕时约有14~18枚胚胎细胞,怀孕初期胚胎死亡率为30%~40%,母猪子宫能支持12~14个胎儿的发育,但一般母猪窝产仔数平均为10头,可见,仍存在提高母猪窝产仔数的潜力。胚胎发育越同步,胚胎成活率越高。β-胡萝卜素对母猪繁殖性能的影响表现出独立的作用,原因是β-胡萝卜素具有氧化活性或作为VA的局部前体,改变了子宫中维生素的代谢 VE的功能多样,主要体现在生物抗氧化、维持生物膜结构完整、增强机体免疫力、调节生物活性物质的合成与代谢、防止和减缓动物应激反应。生产中将VE称为抗不育维生素、抗应激维生素、抗氧化维生素、免疫增进型维生素、肉质改良型维生素等。VE是影响母猪繁殖性能的主要维生素之一。 母猪严重缺乏VE和Se,可引起胚胎重吸收在母猪饲粮中补充VE,可预防仔猪VE缺乏症,改善窝产仔数,增加乳中VE含量,并改善母猪健康情况。 叶酸是一碳基团的供体和受体,通过一碳基团的转移而参与嘌呤、嘧啶、胆碱的合成和某些氨基酸的代谢,而这些物质均是细胞分裂所必需的,因此,在细胞分裂较为活跃的组织中叶酸含量较高。叶酸在DNA和RNA合成过程中起及其重要的作用,妊娠早期需要更加多叶酸以维持胚胎细胞的快速分化。叶酸可能通过提高妊娠前1/3阶段胚胎成活率而改善母猪的繁殖性能根本原因是降低了胚胎死亡率,同时还可通过初乳给仔猪补充更多的叶酸。非肠道途径给妊娠母猪补充叶酸,可提高产仔数10%~15%,表明妊娠期是补充叶酸的关键时期。母猪妊娠期补充叶酸,通过提高胚胎成活率而不是增加排卵数来增加窝产仔数。妊娠早期补充叶酸对增加经产母猪窝产仔数的效果比初产母猪明显。 正常饲养条件下,每千克饲粮中添加15mg叶酸,窝产仔数增加0.2头;短期优饲条件下,每千克饲粮添加等量叶酸平均窝产仔数和产活仔数分别增加1.3头和1.1头,其可能原因是优化饲养条件下,母猪排卵数增加,使叶酸的作用更能发挥。 猪缺乏生物素首先表现为脱毛和皮炎,同时发生皮肤溃疡、口腔粘膜发炎、后肢痉挛、蹄部裂缝等病症。肢蹄病是造成母猪被淘汰的根本原因,生物素与肢蹄角质化及蹄部完整性有关,补充生物素可减少舍饲青年母猪和繁殖母猪肢蹄病发病率;在已患病猪群中补充生物素可减少患病猪的数量及其发病频率。 生物素影响母猪窝产仔数、受胎率及发情间隔等繁殖性能。生物素可缩短发情间隔,提高第一胎以后胎次的窝产仔数,促进妊娠期子宫扩张和胎盘形成,增加子宫角长度和胎盘表面积,更好地为胎儿提供营养,促进了胎儿的充分发育。生物素参与能量代谢,并可刺激雌激素的分泌,降低不发情率。在妊娠和哺乳母猪日粮中添加0.55mg/kg生物素,断奶窝仔数增加,但母猪淘汰率、肢蹄和腿的坚实度、发情间隔等不受影响。 影响维生素饲料添加剂生物活性的重要的因素是什么 分子结构来看,有的具羟基,有的带旁链,有的具双键,还有的带电反应基。这是许多维生素的稳定性较差和娇嫩特性的基本原因所在,易受周围物理和化学环境的影响而降低其生物活性。怕光、怕热、怕潮湿、怕氧化还原、怕接触酸和碱性物质、怕接触金属离子,否则发生化学反应,使活性消失,效价锐减。因此,预混料和配合饲料中维生素的实际含量是饲料生产厂商及家畜(禽)饲养者十分关心的问题。 温度和时间:是影响不稳定维生素在贮存过程中活性的主要的因素。在高温、高湿的贮存条件下,特别是载体含水量高时,损失更大。其中以维生素K、A、B1、叶酸、B2等较为显著。 在室温(18—20℃)或在4℃条件下,维生素A、E预混料的贮存时间和其中维生素含量之间没关系,保存1年后其含量为原重量的98.5%。 保存时间长短和周围环境和温度对预混料和配合饲料中维生素A和E的含量有影响。在室温(18~20℃)或高温30℃条件下,预混料保存3个月后,其中维生素A含量与原含量相比分别减少10%和30%,在同样时间内维生素E的含量则变化不大(99.5%)。在以上两种温度下保存1年后,维生素A的含量分别减少21%和32%。在室温条件下,1年后维生素E含量几乎无变化,仅减少3.4%。在相同条件下,维生素A、E在预混料中降低比配合饲料中少,可能是配合饲料中氧化反应的结果。 对其他维生素预混料如维生素B1、B2、烟酸等的损失随贮存温度的升高而增加,即贮存温度、时间对维生素稳定性的影响是随着贮存温度的升高、时间的延长而逐渐增加。但这种增加并不是直线上升,而是开始时损失缓慢,跟着时间延长,损失率逐渐增大。 湿度:由于吸附在维生素表面的微生物繁衍,使得饲料添加剂易吸收水分,所以加速了维生素氧化变性及氯化胆碱、微量元素和其他化学反应对维生素的破坏作用。环境湿度及载体含水量过高,均会导致维生素在贮存过程中活性降低。水是许多反应的介质,这些反应会导致或加速维生素在贮存过程中活性降低。主要根源在于微量元素,PH值和加工负荷。 各种维生素之间的作用:除氯化胆碱外,常见的维生素制剂及其预混料在干燥基质中是彼此相容的。氯化胆碱不仅是一种可以完全溶解的含水化合物,同时还有着非常明显的酸性、亲水性和亲脂性,因此它能损害其他维生素。尤其高含量的氯化胆碱对预混料中维生素A影响极大。因此,在维生素预混料中不添加氯化胆碱则维生素的稳定性大为提高。 载体(稀释剂):可影响维生素添加的活性,对维生素A、B2、烟酸的稳定性有较大影响。用玉米芯或稻壳作为载体,维生素A的损失最少。高脂肪原料对维生素A的稳定性有害。玉米芯是维生素B2和烟酸的最好载体。用玉米芯作载体的含维生素、矿物质的预混料在室温下贮存24周后,烟酸的损失仅为3%。载体加入的比例也影响维生素的稳定性,加入比例越大损失越小。载体PH值对维生素活性影响较大,使用接近中性的物料最为保险;PH值控制在6—8为宜。其他,如载体含水量、粒子数、容重、分离特性、静电性、表面特性等都有影响。因此在选择载体时应注意这样一些问题。 矿物质:矿物质能促进维生素的氧化。这是因为,矿物质多以硫酸盐的形式添加,呈离子状态存在,在氧化反应中为氧化剂,诱导维生素氧化、变色、变质,使维生素失去活性。 光线和氧的影响:可见光和紫外线、C、叶酸均有强烈的破坏作用。在35℃,相对湿度为90%时,在直射光线和充足氧的环境中,维生素A迅速被破坏,维生素B2虽然经受住许多因素(包括加工)的影响,但极易被可见光或紫外线所破坏。 饲料中抗维生素因子的影响:凡能够破坏某种维生素或使其丧失生理作用的物质都可视为抗维生素因子。通常抗维生素因子有:生大豆粉中的脂肪氧化酶,能够间接地破坏维生素A;可通过添加适宜的防腐剂及高温蒸煮来抑制这种酶的活性,由此减少或免除其破坏作用。酸败脂肪能破坏维生素A、D、E。草木樨等植物中的双香豆素会降低维生素K的作用,干扰血液的凝固。硫胺酶存在于生鱼和一些饲料中,为维生素B1的拮抗物。存在于亚麻仁中的0——脯氨酸衍生物为抗维生素B6因子。抗烟酸因子为烟酸原,存在于小麦、高梁、玉米等谷物饲料中。卵粘蛋白中抗生素蛋白及抗生蛋白链霉素为生物素代谢拮抗物,酸败脂肪也能使生物素失活。抗维生素C因子为抗坏血酸氧化酶,维生素C遇氧化剂时极易遭到破坏。某些药物也影响维生素的稳定性,如磺胺喹啉抗维生素K,氯丙啉抗维生素Bl,磺胺增效剂抗叶酸等,在喂用这些药物时要添加维生素K、B1和叶酸等,以免引起缺乏症。 加工工艺的影响:粉状料和颗粒料两种不同形式对维生素的活性及贮存稳定性均有不同的影响。在制粒时高温度高压力对维生素影响较大,热蒸汽处理会加快破坏维生素。干法高压蒸汽制粒较湿法低压蒸汽制粒维生素A活性损失少,为18—25%,而后者为50%以上。 由于维生素对外界条件比较敏感,所以在维生素的贮存工艺流程中应采取一定的措施防止其降解,如选择稳定的维生素制剂或剂型,改变维生素的分子结构,选择适宜的载体,禁用不利于维生素稳定的物质,选用合理的加工方法,创造适宜的维生素贮存环境,加速产品周转等。

  初级护师-妇产科护理学练习题专业相关知识-第十三章 女性生殖系统炎症病人的护理.pdf

  赤峰克什克腾旗2022年度二级建造师考试《市政设施建设工程管理与实务》第四次知识点检测试卷(附答案).pdf

  初级(师)卫生资格初级康复医学治疗技术师模拟题2021年(14)_真题-无答案.pdf

  初级(师)卫生资格初级康复医学治疗技术师模拟题2021年(64)_真题-无答案.pdf

  初级(师)卫生资格初级康复医学治疗技术师模拟题2021年(五)_真题-无答案.pdf

  初级(师)卫生资格初级临床医学检验技术师模拟题2021年(1题-无答案51.pdf

  初级(师)卫生资格初级临床医学检验技术师模拟题2021年(1析)14.pdf

  初级(师)卫生资格初级临床医学检验技术师模拟题2021年(1线.pdf

  初级(师)卫生资格初级临床医学检验技术师模拟题2021年(5含答案与解析)14.pdf

  2023年长安大学计算机科学与技术专业《计算机组成原理》科目期末试卷B(有答案).docx

  部编版语文四年级下册 期末非连续性文本阅读专项测试卷(含答案).doc

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者